Semi-supervised Clustering: A Case Study
نویسندگان
چکیده
The exploration of domain knowledge to improve the mining process begins to give its first results. For example, the use of domaindriven constraints allows the focusing of the discovery process on more useful patterns, from the user’s point of view. Semi-supervised clustering is a technique that partitions unlabeled data by making use of domain knowledge, usually expressed as pairwise constraints among instances or just as an additional set of labeled instances. This work aims for studying the efficacy of semi-supervised clustering, on the problem of determining if some movie will achieve or not an award, just based on the movies characteristics and on ratings given by spectators. Experimental results show that, in general, semi-supervised clustering achieves better accuracy than unsupervised methods.
منابع مشابه
Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملFuzzy Clustering for Semi-supervised Learning - Case Study: Construction of an Emotion Lexicon
We consider the task of semi-supervised classification: extending category labels from a small dataset of labeled examples to a much larger set. We show that, at least on our case study task, unsupervised fuzzy clustering of the unlabeled examples helps in obtaining the hard clusters. Namely, we used the membership values obtained with fuzzy clustering as additional features for hard clustering...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012